首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   5篇
化学   134篇
晶体学   5篇
力学   33篇
数学   41篇
物理学   49篇
  2023年   1篇
  2022年   7篇
  2021年   9篇
  2020年   10篇
  2019年   10篇
  2018年   14篇
  2017年   11篇
  2016年   17篇
  2015年   6篇
  2014年   14篇
  2013年   30篇
  2012年   26篇
  2011年   19篇
  2010年   10篇
  2009年   15篇
  2008年   8篇
  2007年   11篇
  2006年   9篇
  2005年   9篇
  2004年   2篇
  2003年   7篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1994年   1篇
  1993年   2篇
  1989年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1975年   1篇
排序方式: 共有262条查询结果,搜索用时 31 毫秒
41.
Based on first principles calculations and the K·p effective model, we propose that alkali metal deposition on the surface of hexagonal XN2 (X= Cr, Mo, W) nanosheets induces topologically nontrivial phases in these systems. When spin orbit coupling (SOC) is disregarded, the electron-like conduction band from N-pz orbitals can be considered to cross the hole-like valence band from X-d2z orbitals, thereby giving rise to a topological nodal line state in lithium-functionalized XN2 sheets (Li2MoN2 and Li2WN2). Such band crossing is protected by the existence of mirror reflection and time reversal symmetry. More interestingly, the bands cross exactly at the Fermi level, and the linear dispersion regions of such band crossings extend to as high as 0.9 eV above the crossing. For Li2CrN2, the results reveal the emergence of a Dirac cone at the Fermi level. Our calculations show that lattice compression decreases the thickness of a Li2CrN2 nanosheet, leading to phase transition to a nodal line semimetal. The evolution of the band gap of Li2XN2 at the Γ point indicates that the nontrivial topological character of Li2XN2 nanolayers is stable over a large strain range. When SOC is included, the band crossing point is gapped out giving rise to quantum spin Hall states in Li2CrN2 nanosheets, while for Li2MoN2, the SOC-induced gap at the crossing points is negligible.  相似文献   
42.
Similarity between the gravitoelectromagnetism and the electromagnetism is discussed. We show that the gravitomagnetic field (similar to the magnetic field) can be equivalent to the non-commutative effect of the momentum sector of the phase space when one maintains only the first order of the non-commutative parameters. This is performed through two approaches. In one approach, by employing the Feynman proof, the existence of a Lorentz-like force in the gravitoelectromagnetism is indicated. The appearance of such a force is subjected to the slow motion and the weak field approximations for stationary fields. The analogy between this Lorentz-like force and the motion equation of a test particle in a non-commutative space leads to the mentioned equivalency. In fact, this equivalency is achieved by the comparison of the two motion equations. In the other and quietly independent approach, we demonstrate that a gravitomagnetic background can be treated as a Dirac constraint. That is, the gravitoelectromagnetic field can be regarded as a constrained system from the sense of the Dirac theory. Indeed, the application of the Dirac formalism for the gravitoelectromagnetic field reveals that the phase space coordinates have non-commutative structure from the view of the Dirac bracket. Particularly, the gravitomagnetic field as a weak field induces the non-trivial Dirac bracket of the momentum sector which displays the non-commutativity.  相似文献   
43.
In this study, passive cooling of a room using a solar chimney and water spraying system in the room inlet vents is simulated numerically in Yazd, Iran (a hot and arid city with very high solar radiation). The performance of this system has been investigated for the warmest day of the year (5 August) which depends on the variation of some parameters such as water flow rate, solar heat flux, and inlet air temperature. In order to get the best performance of the system for maximum air change and also absorb the highest solar heat flux by the absorber in the warmest time of the day, different directions (West, East, North and South) have been studied and the West direction has been selected as the best direction. The minimum amount of water used in spraying system to set the inside air averaged relative humidity <65 % is obtained using trial and error method. The simulation results show that this proposed system decreases the averaged air temperature in the middle of the room by 9–14 °C and increases the room relative humidity about 28–45 %.  相似文献   
44.
In this study, the application of various concentrations (0.02%, 0.04%, 0.06% and 0.08%) of Satureja khuzestanica essential oil (EO) was examined on the oxidative stability of sunflower oil and compared to butylated hydroxyanisole (BHA) during storage at 60°C. Gas chromatography (GC) and GC-mass spectrometry analyses of the oils revealed that carvacrol (87.7%) was the major component of EO. Peroxide value and anisidine value measurements in sunflower oil showed that all concentrations of EO had antioxidant effects in comparison to BHA. Oil samples supplemented with EO concentration of 0.08% were the most stable during storage (p?相似文献   
45.
A nondestructive eddy current technique is used to evaluate tempered martensite embrittlement in 4340 AISI steels after quench and tempering in the range 240–550 °C. A relation between the responses of the magnetic induction (normalized impedance of the coil) and destructive Charpy impact test results has been established. The study shows that the eddy current method could be used to separate brittle parts due to the microstructure changes.  相似文献   
46.
In N,N′‐di‐tert‐butyl‐N′′,N′′‐dimethylphosphoric triamide, C10H26N3OP, (I), and N,N′,N′′,N′′′‐tetra‐tert‐butoxybis(phosphonic diamide), C16H40N4O3P2, (II), the extended structures are mediated by P(O)...(H—N)2 interactions. The asymmetric unit of (I) consists of six independent molecules which aggregate through P(O)...(H—N)2 hydrogen bonds, giving R21(6) loops and forming two independent chains parallel to the a axis. Of the 12 independent tert‐butyl groups, five are disordered over two different positions with occupancies ranging from to . In the structure of (II), the asymmetric unit contains one molecule. P(O)...(H—N)2 hydrogen bonds give S(6) and R22(8) rings, and the molecules form extended chains parallel to the c axis. The structures of (I) and (II), along with similar structures having (N)P(O)(NH)2 and (NH)2P(O)(O)P(O)(NH)2 skeletons extracted from the Cambridge Structural Database, are used to compare hydrogen‐bond patterns in these families of phosphoramidates. The strengths of P(O)[...H—N]x (x = 1, 2 or 3) hydrogen bonds are also analysed, using these compounds and previously reported structures with (N)2P(O)(NH) and P(O)(NH)3 fragments.  相似文献   
47.
We would like to show that what has been presented in the paper by Kim, Kim, and Seong [J. Chem. Phys, 135, 034505 (2011)] is nothing but an unnecessarily complicated version of (optimized) random phase approximation.  相似文献   
48.
The flow of non-Newtonian fluids through two-dimensional porous media is analyzed at the pore scale using the smoothed particle hydrodynamics (SPH) method. A fully explicit projection method is used to simulate incompressible flow. This study focuses on a shear-thinning power-law model (n < 1), though the method is sufficiently general to include other stress-shear rate relationships. The capabilities of the proposed method are demonstrated by analyzing a Poiseuille problem at low Reynolds numbers. Two test cases are also solved to evaluate validity of Darcy’s law for power-law fluids and to investigate the effect of anisotropy at the pore scale. Results show that the proposed algorithm can accurately simulate non-Newtonian fluid flows in porous media.  相似文献   
49.
Summary: Back-stress is the equilibrium stress and represents conditions under which relaxation events in the material stop and the material can carry an applied load indefinitely without a change in strain. In most models for glassy polymers, back-stress plays a central role since relaxation in materials is closely related to the distance of the current conditions from equilibrium. A number of these models that are commonly used for modeling glassy polymers use a modeling structure similar to large deformation plasticity. The flow rule for the plastic strain in these models are directly connected to the “over-stress,” a properly invariant difference between the stress and the back-stress. The importance of correctly evaluating the back-stress to use in these models is clear. For this class of models, the authors have recently developed a method for directly calculating the back-stress under shear deformations. This method is based on evaluating the slope of the stress-strain response under conditions of similar elastic and plastic strain, but different strain rates. Since plastic flow goes to zero at equilibrium, the back-stress can be found by locating points of zero plastic strain rate. Using the proposed method, the back-stress in glassy polycarbonate has been evaluated under shear in isothermal tests going from room temperature to 120 °C, just below the glass transition temperature for polycarbonate. The proposed method provided a full map of the back-stress for polycarbonate over a large range of shear strain and temperature.  相似文献   
50.
Journal of Thermal Analysis and Calorimetry - Many studies have been done on the stability, thermo-mechanical degradation and pyrolysis of polymers with hydrocarbon skeleton. According to the main...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号